Copied to
clipboard

G = C24.313C23order 128 = 27

153rd non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.313C23, C23.423C24, C22.2162+ 1+4, C22.1642- 1+4, C425C415C2, C23⋊Q8.7C2, C23.46(C4○D4), (C23×C4).108C22, (C2×C42).538C22, C23.8Q8.26C2, (C22×C4).1256C23, C23.11D4.13C2, (C22×Q8).125C22, C23.67C2355C2, C23.63C2376C2, C2.39(C22.45C24), C2.C42.171C22, C2.29(C22.50C24), C2.66(C23.36C23), C2.23(C22.33C24), (C4×C22⋊C4).58C2, (C2×C4).142(C4○D4), (C2×C4⋊C4).286C22, C22.300(C2×C4○D4), (C2×C22⋊C4).468C22, SmallGroup(128,1255)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.313C23
C1C2C22C23C22×C4C2×C42C4×C22⋊C4 — C24.313C23
C1C23 — C24.313C23
C1C23 — C24.313C23
C1C23 — C24.313C23

Generators and relations for C24.313C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=1, d2=ca=ac, f2=a, g2=ba=ab, ede=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 388 in 210 conjugacy classes, 92 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×Q8, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C23×C4, C22×Q8, C4×C22⋊C4, C425C4, C23.8Q8, C23.63C23, C23.67C23, C23⋊Q8, C23.11D4, C23.11D4, C24.313C23
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, 2- 1+4, C23.36C23, C22.33C24, C22.45C24, C22.50C24, C24.313C23

Smallest permutation representation of C24.313C23
On 64 points
Generators in S64
(1 10)(2 11)(3 12)(4 9)(5 37)(6 38)(7 39)(8 40)(13 52)(14 49)(15 50)(16 51)(17 46)(18 47)(19 48)(20 45)(21 43)(22 44)(23 41)(24 42)(25 54)(26 55)(27 56)(28 53)(29 60)(30 57)(31 58)(32 59)(33 64)(34 61)(35 62)(36 63)
(1 26)(2 27)(3 28)(4 25)(5 23)(6 24)(7 21)(8 22)(9 54)(10 55)(11 56)(12 53)(13 60)(14 57)(15 58)(16 59)(17 62)(18 63)(19 64)(20 61)(29 52)(30 49)(31 50)(32 51)(33 48)(34 45)(35 46)(36 47)(37 41)(38 42)(39 43)(40 44)
(1 12)(2 9)(3 10)(4 11)(5 39)(6 40)(7 37)(8 38)(13 50)(14 51)(15 52)(16 49)(17 48)(18 45)(19 46)(20 47)(21 41)(22 42)(23 43)(24 44)(25 56)(26 53)(27 54)(28 55)(29 58)(30 59)(31 60)(32 57)(33 62)(34 63)(35 64)(36 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(2 11)(4 9)(5 39)(6 8)(7 37)(14 49)(16 51)(17 19)(18 45)(20 47)(21 41)(22 24)(23 43)(25 54)(27 56)(30 57)(32 59)(33 35)(34 63)(36 61)(38 40)(42 44)(46 48)(62 64)
(1 18 10 47)(2 64 11 33)(3 20 12 45)(4 62 9 35)(5 58 37 31)(6 16 38 51)(7 60 39 29)(8 14 40 49)(13 43 52 21)(15 41 50 23)(17 54 46 25)(19 56 48 27)(22 57 44 30)(24 59 42 32)(26 63 55 36)(28 61 53 34)
(1 58 55 50)(2 32 56 16)(3 60 53 52)(4 30 54 14)(5 63 41 47)(6 33 42 19)(7 61 43 45)(8 35 44 17)(9 57 25 49)(10 31 26 15)(11 59 27 51)(12 29 28 13)(18 37 36 23)(20 39 34 21)(22 46 40 62)(24 48 38 64)

G:=sub<Sym(64)| (1,10)(2,11)(3,12)(4,9)(5,37)(6,38)(7,39)(8,40)(13,52)(14,49)(15,50)(16,51)(17,46)(18,47)(19,48)(20,45)(21,43)(22,44)(23,41)(24,42)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63), (1,26)(2,27)(3,28)(4,25)(5,23)(6,24)(7,21)(8,22)(9,54)(10,55)(11,56)(12,53)(13,60)(14,57)(15,58)(16,59)(17,62)(18,63)(19,64)(20,61)(29,52)(30,49)(31,50)(32,51)(33,48)(34,45)(35,46)(36,47)(37,41)(38,42)(39,43)(40,44), (1,12)(2,9)(3,10)(4,11)(5,39)(6,40)(7,37)(8,38)(13,50)(14,51)(15,52)(16,49)(17,48)(18,45)(19,46)(20,47)(21,41)(22,42)(23,43)(24,44)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(33,62)(34,63)(35,64)(36,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,11)(4,9)(5,39)(6,8)(7,37)(14,49)(16,51)(17,19)(18,45)(20,47)(21,41)(22,24)(23,43)(25,54)(27,56)(30,57)(32,59)(33,35)(34,63)(36,61)(38,40)(42,44)(46,48)(62,64), (1,18,10,47)(2,64,11,33)(3,20,12,45)(4,62,9,35)(5,58,37,31)(6,16,38,51)(7,60,39,29)(8,14,40,49)(13,43,52,21)(15,41,50,23)(17,54,46,25)(19,56,48,27)(22,57,44,30)(24,59,42,32)(26,63,55,36)(28,61,53,34), (1,58,55,50)(2,32,56,16)(3,60,53,52)(4,30,54,14)(5,63,41,47)(6,33,42,19)(7,61,43,45)(8,35,44,17)(9,57,25,49)(10,31,26,15)(11,59,27,51)(12,29,28,13)(18,37,36,23)(20,39,34,21)(22,46,40,62)(24,48,38,64)>;

G:=Group( (1,10)(2,11)(3,12)(4,9)(5,37)(6,38)(7,39)(8,40)(13,52)(14,49)(15,50)(16,51)(17,46)(18,47)(19,48)(20,45)(21,43)(22,44)(23,41)(24,42)(25,54)(26,55)(27,56)(28,53)(29,60)(30,57)(31,58)(32,59)(33,64)(34,61)(35,62)(36,63), (1,26)(2,27)(3,28)(4,25)(5,23)(6,24)(7,21)(8,22)(9,54)(10,55)(11,56)(12,53)(13,60)(14,57)(15,58)(16,59)(17,62)(18,63)(19,64)(20,61)(29,52)(30,49)(31,50)(32,51)(33,48)(34,45)(35,46)(36,47)(37,41)(38,42)(39,43)(40,44), (1,12)(2,9)(3,10)(4,11)(5,39)(6,40)(7,37)(8,38)(13,50)(14,51)(15,52)(16,49)(17,48)(18,45)(19,46)(20,47)(21,41)(22,42)(23,43)(24,44)(25,56)(26,53)(27,54)(28,55)(29,58)(30,59)(31,60)(32,57)(33,62)(34,63)(35,64)(36,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,11)(4,9)(5,39)(6,8)(7,37)(14,49)(16,51)(17,19)(18,45)(20,47)(21,41)(22,24)(23,43)(25,54)(27,56)(30,57)(32,59)(33,35)(34,63)(36,61)(38,40)(42,44)(46,48)(62,64), (1,18,10,47)(2,64,11,33)(3,20,12,45)(4,62,9,35)(5,58,37,31)(6,16,38,51)(7,60,39,29)(8,14,40,49)(13,43,52,21)(15,41,50,23)(17,54,46,25)(19,56,48,27)(22,57,44,30)(24,59,42,32)(26,63,55,36)(28,61,53,34), (1,58,55,50)(2,32,56,16)(3,60,53,52)(4,30,54,14)(5,63,41,47)(6,33,42,19)(7,61,43,45)(8,35,44,17)(9,57,25,49)(10,31,26,15)(11,59,27,51)(12,29,28,13)(18,37,36,23)(20,39,34,21)(22,46,40,62)(24,48,38,64) );

G=PermutationGroup([[(1,10),(2,11),(3,12),(4,9),(5,37),(6,38),(7,39),(8,40),(13,52),(14,49),(15,50),(16,51),(17,46),(18,47),(19,48),(20,45),(21,43),(22,44),(23,41),(24,42),(25,54),(26,55),(27,56),(28,53),(29,60),(30,57),(31,58),(32,59),(33,64),(34,61),(35,62),(36,63)], [(1,26),(2,27),(3,28),(4,25),(5,23),(6,24),(7,21),(8,22),(9,54),(10,55),(11,56),(12,53),(13,60),(14,57),(15,58),(16,59),(17,62),(18,63),(19,64),(20,61),(29,52),(30,49),(31,50),(32,51),(33,48),(34,45),(35,46),(36,47),(37,41),(38,42),(39,43),(40,44)], [(1,12),(2,9),(3,10),(4,11),(5,39),(6,40),(7,37),(8,38),(13,50),(14,51),(15,52),(16,49),(17,48),(18,45),(19,46),(20,47),(21,41),(22,42),(23,43),(24,44),(25,56),(26,53),(27,54),(28,55),(29,58),(30,59),(31,60),(32,57),(33,62),(34,63),(35,64),(36,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(2,11),(4,9),(5,39),(6,8),(7,37),(14,49),(16,51),(17,19),(18,45),(20,47),(21,41),(22,24),(23,43),(25,54),(27,56),(30,57),(32,59),(33,35),(34,63),(36,61),(38,40),(42,44),(46,48),(62,64)], [(1,18,10,47),(2,64,11,33),(3,20,12,45),(4,62,9,35),(5,58,37,31),(6,16,38,51),(7,60,39,29),(8,14,40,49),(13,43,52,21),(15,41,50,23),(17,54,46,25),(19,56,48,27),(22,57,44,30),(24,59,42,32),(26,63,55,36),(28,61,53,34)], [(1,58,55,50),(2,32,56,16),(3,60,53,52),(4,30,54,14),(5,63,41,47),(6,33,42,19),(7,61,43,45),(8,35,44,17),(9,57,25,49),(10,31,26,15),(11,59,27,51),(12,29,28,13),(18,37,36,23),(20,39,34,21),(22,46,40,62),(24,48,38,64)]])

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4X4Y4Z4AA4AB
order12···2224···44···44444
size11···1442···24···48888

38 irreducible representations

dim111111112244
type+++++++++-
imageC1C2C2C2C2C2C2C2C4○D4C4○D42+ 1+42- 1+4
kernelC24.313C23C4×C22⋊C4C425C4C23.8Q8C23.63C23C23.67C23C23⋊Q8C23.11D4C2×C4C23C22C22
# reps1221421316411

Matrix representation of C24.313C23 in GL6(𝔽5)

400000
040000
001000
000100
000040
000004
,
400000
040000
004000
000400
000010
000001
,
100000
010000
004000
000400
000010
000001
,
010000
400000
003000
000200
000001
000040
,
100000
040000
001000
000400
000010
000004
,
300000
020000
000100
001000
000030
000003
,
100000
040000
003000
000300
000020
000003

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,3] >;

C24.313C23 in GAP, Magma, Sage, TeX

C_2^4._{313}C_2^3
% in TeX

G:=Group("C2^4.313C2^3");
// GroupNames label

G:=SmallGroup(128,1255);
// by ID

G=gap.SmallGroup(128,1255);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,560,253,758,723,100,675,192]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=1,d^2=c*a=a*c,f^2=a,g^2=b*a=a*b,e*d*e=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽